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OutlineOutline

�Introduction to DUVFEL

�Thermal emittance and RF gun studies
�Beam based studies of applied photoinjector fields

�Experimental/instrumentation issues

�Thermal emittance scaling measurement

�Microbunching and femtosecond transverse dynamics
�Subpicosecond instrumentation

�Compressed beam measurements and microbunching.

�Slice emittance measurement and observation of laminar/cross-
over trajectories
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DUVFEL ProgramDUVFEL Program
Designed to produce fully coherent radiation using

the high-gain harmonic generation process.

Status

�Linac fully commissioned

�Now commissioning SASE FEL experiments at 400 nm.

�Move rapidly to 200 nm in fundamental, 67 nm in 3rd harmonic.

�Seed with conventional laser (high gain harmonic generation � HGHG).

�Future: Upgrade energy to 310 MeV, reach 30 nm wavelength

Facility consists of

�Titanium:Sapphire seed laser

�RF photocathode and 210 MeV linac

�Bunch compressor for kA class beam.

�10m NISUS undulator: 3.9 cm period, K=1.
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DUVFEL FacilityDUVFEL Facility

1.6 cell gun
with

copper
cathode

75 MeV

Bend

50 m

5 MeV

Bend

DumpDump

CSR
diagnostics

Time domain
diagnostics

Undulators Linac tanks

210 MeV

Bunch compressor
with post accel.

30 mJ, 100 fs
Ti:Sapphire laser
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Tank 1Tank 2Tank 4 Tank 3

Chicane

Kly AKly C Kly B

1.6 cell gun
with copper

cathode

Pop 14

Pop 02

DUVFEL AcceleratorDUVFEL Accelerator

 45 MW Thompson Klystrons

60 MeV 60 MeV 42 MeV 30 MeV

Bend
3m S-band tanks

25 m

30 mJ, 100 fs Ti:Sapphire laser

5 MeV

Coherent IR detector
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DUVFEL DUVFEL PhotoinjectorPhotoinjector

1.6 cell BNL/SLAC/UCLA Gun IV

Cathode material Copper

Max energy 5.1 MeV

Loaded Q 7100

Unloaded Q 13500

RF pulse length 2.5 us

Quantum efficiency ~2e-5

Vacuum ~8e-9 torr

Phase jitter < 1ps

Titanium:Sapphire Laser

IR laser energy 30 mJ

UV laser energy 2 mJ

Laser pulse length 2-4 ps FWHM

Normal incidence in-vacuum mirrors

Laser pulse length in IR is adjustable
from 100 fs to 10 ps.  UV output
limited to narrow pulse length range
due to BBO harmonic crystals.



December, 2001   W.S. Graves 7

Photoinjector Photoinjector IssuesIssues

�In most laboratories�there is considerable disagreement between the
experimental data and the predictions of PARMELA and the semi-analytic tools.
We note that PARMELA and the semi-analytic approach are in good agreement
with each other.  One should ask the following questions:

(i)  Are there some subtleties in the experimental setup that have prevented the
beams from achieving the conditions used in the simulations?

(ii)  Is there some fundamental physics of the beam dynamics near the cathode
that is not well modeled by our codes?�

-excerpted from the 4th Report of the Technical Advisory Committee
to the Linac Coherent Light Source project, January, 2001.

Lack of agreement between theory/simulation and experiment

Solution is to reduce complexity of beam dynamics, achieve
agreement between theory and experiment, then add complexity
(more charge, longer bunches�collective effects).
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Envelope equationEnvelope equation

Different time slices of beam experience different forces due to RF sinusoid and
space charge.

Emittance compensation is the process of untwisting the time slices so that they
align.

Nonlinear fields cause irreversible emittance growth (not time correlations).

We avoid these effects by working with short, low charge beams transported over
short distances.
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Projected Projected emittance vs emittance vs charge and FWHMcharge and FWHM
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Use HOMDYN simulations to estimate limits on maximum bunch
length and charge. Choose working parameters of 2 pC, 2 ps FWHM.

Simulation Simulation
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Solenoid Scan LayoutSolenoid Scan Layout

CCD
Camera

YAG screen
Mirror

Solenoid

1.6 cell photoinjector
Dipole
trim

1cm

65 cm

12 cm33 cm

Can measure
�charge
�energy
�x and y centroid
�x and y beamsize
�px and py

Telecentric lens
magnif. = 1
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Solenoid Scan EquationsSolenoid Scan Equations

Break solenoid into 40 slices for
accurate field profile.

Build transport matrix by
summing slices.

Use MAD and Matlab.
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Low Energy Beam MeasurementsLow Energy Beam Measurements
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Video processing

�3x3 median filter
applied.

�Dark current image
subtracted.

�Pixels < 10% peak are
zeroed.

Error estimates

Monte Carlo
method using
measured beam
size jitter.
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User InterfaceUser Interface
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Laser spatial and time profilesLaser spatial and time profiles

UV light is spatially filtered
and apertured.

Transport calculations depend
only on 2nd moments, not on
spatial shape.
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RF zero phasing electron bunch length measurementRF zero phasing electron bunch length measurement
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Beam size and divergence Beam size and divergence vs vs laser spot sizelaser spot size

Error bars are measured data.

Blue lines are from HOMDYN  simulation using RF fields from
SUPERFISH model and measured solenoid B-field.

Upper blue line has 1/2 cell field 10% higher than full cell.

Lower blue line has 1/2 cell field 10% lower than full cell.
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Beam size and divergence Beam size and divergence vs vs RF phaseRF phase

Error bars are measured data.

Blue lines are from HOMDYN  simulation using RF fields from
SUPERFISH model and measured solenoid B-field.

Upper line has 1/2 cell field 10% higher than full cell.

Lower line has 1/2 cell field 10% lower than full cell.
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Cathode RedesignCathode Redesign

Original vacuum
seal carries RF
current.

New design uses
RF spring seal in
small gap.

Old design

New design

Data from Jim Rose

Cathode

Beam axis

Iris Photoinjector exit
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Thermal Thermal EmittanceEmittance
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Error bars are measured data points.

Curve is nonlinear least squares fit with _rf and _cu as
parameters: _rf  = 3.10 +/- 0.49 and _cu  = 4.73 +/- 0.04 eV.

The fit provides a second estimate of the electron kinetic
energy Ek = 0.40 eV, in close agreement with the estimate
from the radial dependence of emittance.
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Emittance vs Emittance vs chargecharge
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Summary of laser/RF gun studiesSummary of laser/RF gun studies

�Measured beam dynamics show good agreement between theory and
experiment in the low charge, short bunch limit after improvements to
the experiments.

�First measurements of thermal emittance are in good agreement with
theory.

�Attention to experimental detail is important!

�Beam-based method of characterizing photoinjector fields can be
widely used.

What�s next?
Shape spatial and time profiles of laser.

Analysis of slice dynamics.

Experimental studies of emittance compensation at high charge.

Detailed compression studies.
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�Subpicosecond instrumentation

�Compressed beam measurements and microbunching.

�Slice emittance measurement.

�Observation of laminar/cross-over trajectories

Microbunching Microbunching and and femtosecond femtosecond transversetransverse
dynamicsdynamics
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Positive 
RF slope

Accelerate bunch at 
RF zero-crossing

Image at screen 
depends on 
energy spread

Bending magnet 
generates 
dispersion

Zero RF 
slope

Negative 
RF slope

Measure bunchlength by using linac to �streak� beam on profile monitor.

At DUVFEL, use tank3 to remove correlations from compression, tank 4 to
produce chirp.

RF Zero PhaseRF Zero Phase
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RF Zero PhaseRF Zero Phase

Phase = -90 RF off Phase = +90

Charge 250 pC

Energy 75 MeV

Chicane off

Tank 4 11 MeV

Much more information than bunch length is available.

Find detailed time profiles and transverse slice dynamics
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Peak spacing is 140 fs (42 um).

Peak full-width is 50 fs (15 um).
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Infrared spectral measurementInfrared spectral measurement
Data and analysis from Larry Carr

These spectra were recorded concurrently with the three
RF zero-phasing time profiles on the previous slide.
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Uncompressed e-beam time profile
(50 pC)
Resolution = 200 fs, RMS length = 1.05 ps.

Uncompressed e-beam time profile
(100 pC)
Resolution = 200 fs, RMS length = 1.13 ps.
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Recent Recent Microbunching Microbunching MeasurementMeasurement

Images of chirped,
compressed ebeam
from scintillator in
dispersive section.

(RF zero phasing
measurement)

Projection of above
images onto time axis.

Compression phase is
26 degrees from
crest�just before
max compression.
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Slice Slice emittance emittance measurementmeasurement

0 1 2 3 4 52.5
3

3.5
4

4.5
5

5.5
6

6.5
7

Time (ps)

em
it

ta
nc

e 
(m

m
-m

ra
d)

0 1 2 3 4 5-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (ps)

A
lp

ha

0 1 2 3 4 518

20

22

24

26

28

30

Time (ps)

B
et

a 
(m

)

100 150 200 250 300 350 400

60

80

100

120

140

160

180

TailHead

100 150 200 250 300 350 400

80
90

100
110
120
130
140
150
160

TailHead

50 100 150 200 250 300 350 400

60

80

100

120

140

160

TailHead

Images on left
Beam distribution at 3 different
quad settings.

Compare vertical size of center
of beam with head and tail.

Plots on right
Alpha, beta, and emittance
plotted as function of time slice.

500 fs slice widths

Projected beam parameters also
measured to be

alpha = -0.3

beta = 22 m

emittance = 5.3 mm-mrad
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Laminar/cross-over trajectoriesLaminar/cross-over trajectories

HeadTail HeadTail HeadTail

HeadTail HeadTail HeadTail

Increasing solenoid current

Vertical dynamics
Lattice is set to image end of Tank 2 to RF-zero phasing YAG.

Particles in tail of beam are diverging, and in head converging.

Head has higher current and so reaches waist at higher solenoid setting.
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SummarySummary

�Instrumentation demonstrates time resolution < 100 fs.

�Microbunching appears during compression�likely due to CSR instability
seeded by photoinjector drive laser time modulations.

�Microbunched beam may be used as intense coherent IR source, or for
novel accelerator tests.

�Combination of measurement techniques enables detailed study of
transverse slice dynamics.


